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Abstract

Generating dynamic, spatiotemporally consistent 3D content from
monocular video is a significant challenge. Existing methods lever-
aging Gaussian Splatting (GS) often struggle to maintain such coher-
ence without strong regularization. We introduce HybridDeform4D,
a novel framework that enhances 4D object generation by jointly
optimizing a deformable mesh with its surface-bound GS attributes.
This framework supports starting with a coarse mesh and capturing
both complex motion and appearance variations without requir-
ing high-quality initialization. To ensure coherent animation, we
introduce a coarse-to-fine optimization scheme. This strategy first
focuses on learning motion around a key reference frame before
progressively expanding to optimize the entire video sequence, en-
suring stable and accurate temporal dynamics. Experimental results
show that HybridDeform4D achieves high rendering quality and
spatial-temporal consistency. Furthermore, we demonstrate the
versatility of our approach by extending it to text-to-3D synthesis.
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1 Introduction

Recent advancements in 4D synthesis build upon score distillation
sampling (SDS) [Poole et al. 2022] from 2D diffusion models to gen-
erate dynamic 3D content. While recent methods using GS [Kerbl
et al. 2023] representation are quite popular, they often model mo-
tion by optimizing each Gaussian independently [Ren et al. 2022;
Zeng et al. 2024], creating an unstructured and inefficient space
for learning deformations. DreamMesh4D [Li et al. 2024] leverages
a deformable mesh to govern the motion of surface-bound Gaus-
sians (i.e., SuGaR [Guédon and Lepetit 2024]). This approach en-
forces spatial coherence through the mesh’s connectivity. However,
DreamMesh4D struggles to capture intricate appearance changes
or topological variations like object-part overlaps (Figure 3), which
are not easily represented by mesh transformations alone.
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Figure 1: Generated 4D assets through HybridDeform4D.

We introduce HybridDeform4D, a coarse-to-fine framework for
video-to-4D generation. As illustrated in Figure 2, our method first
generates a textured mesh from a key reference frame using image-
to-3D techniques [Liu et al. 2023; Xiang et al. 2025]. Then, a dynamic
learning stage refines both geometry and appearance through the
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joint optimization of the mesh vertices and attributes of bound
surface Gaussians. To achieve high-quality mesh deformations, we
reparameterize the vertices (V. — V* = (I + AL)) based on the
Laplace-Beltrami operator L [Nicolet et al. 2021].

2 Method

HybridDeform4D starts by attaching 6 Gaussians to each face of
an initial mesh, adopting the differentiable rendering pipeline and
loss designs from DreamMesh4D. After rendering its RGB C* and
alpha S* under reference view, we compute reconstruction loss
Lief = ||CAj — Ct|| and mask loss Lyask = ||§: — S¥||, where C} and
S; are the ground-truth data from input video at timestamp 7.

Lip = Asps Lsps + Aref Lref + Amask Lmask + AararLarar (1)

The hybrid representation is optimized with the above composite
weighted loss function, where an SDS loss is utilized for supervision
under other randomly sampled views. As-Rigid-As-Possible (ARAP)
regularization is incorporated to preserve geometric integrity.

A core component of our method is a Multi-Layer Perceptron
(MLP) that explicitly models the joint optimization of time-varying
geometry and appearance. Conditioned on the embedding of frame
7, this network predicts the deformed mesh vertex positions (V*)
as well as the dynamic attributes of bound Gaussians (i.e., opacity
and Spherical Harmonic (SH) coefficients).

To ensure temporally coherent results, we employ a coarse-to-
fine optimization strategy. The training process initially focuses on
a narrow window of frames around the reference view (e.g., 7o + 1).
This temporal window then linearly expands throughout the first
70% of the optimization steps until it encompasses the entire video
sequence. Frame sampling within this window is hybrid: 70% of
frames are chosen randomly to capture diverse states, while 30%
are selected sequentially to maintain local motion dynamics.

3 Evaluation

For quantitative analysis, we adopted the metrics from Stag4D and
DreamMesh4D. We evaluated image-level fidelity using the CLIP
score and reference-view PSNR. Temporal coherence was assessed
with the FID-VID. To measure mesh quality during deformation,
the self-intersection ratio was calculated. As detailed in Table 1, our
framework consistently outperforms baseline approaches.

An ablation study was conducted to validate our joint optimiza-
tion and coarse-to-fine strategy. As shown in Figure 3, joint opti-
mization is critical for capturing fine details, such as the movement
of the elephant’s eye, while the coarse-to-fine approach success-
fully models large-scale motions, like the frog’s arm lifting. Fur-
thermore, we demonstrate the versatility of our joint refinement
process, which can be extended to other tasks like optimization-
based image-to-3D generation (Figure 4).

Table 1: Quantitative comparison with baseline methods.

Method PSNR (ref) T FVD | SSIM (ref) T Self-Intersection |
DreamMesh4D [Li et al. 2024] 36.68 498.47 0.858 0.69%
Stag4D [Zeng et al. 2024] 33.55 610.77 0.844 -
Ours 38.03 427.02 0.865 0.18%
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Figure 2: Overview of the HybridDeform4D pipeline. Our
pipeline begins by generating a hybrid mesh-Gaussian represen-
tation from a single reference frame. We then jointly optimize the
mesh deformation and the GS attributes for dynamic appearance.
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Figure 3: Ablation study results.

Figure 4: Applying our joint refinement to 3D generation.
Mesh deformation serves as an effective geometric prior to improve
Gaussian optimizations.

4 Discussion

HybridDeform4D enhances 4D object generation by adopting joint
refinement optimizations for both mesh deformation and GS ap-
pearance. This strategy effectively supports the spatial-temporal
consistency during dynamic generation. Future work can expand
our approach to feed-forward training and scene-level generation.
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